Z table
Interactive Z-table and Inverse Z table see examples. please hover over the relevant cell. Explore our Interactive Z-table and inverse Z table with examples. Simply hover over the relevant cell to see its details.
Z | 0 | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.5 | 0.5039893563 | 0.5079783137 | 0.5119664734 | 0.5159534369 | 0.5199388058 | 0.5239221827 | 0.5279031702 | 0.531881372 | 0.5358563926 |
0.1 | 0.5398278373 | 0.5437953125 | 0.547758426 | 0.5517167867 | 0.5556700048 | 0.5596176924 | 0.5635594629 | 0.5674949317 | 0.5714237159 | 0.5753454347 |
0.2 | 0.5792597094 | 0.5831661635 | 0.5870644226 | 0.5909541151 | 0.5948348717 | 0.5987063257 | 0.6025681132 | 0.6064198732 | 0.6102612476 | 0.6140918812 |
0.3 | 0.6179114222 | 0.6217195218 | 0.6255158347 | 0.6293000189 | 0.633071736 | 0.6368306512 | 0.6405764332 | 0.6443087548 | 0.6480272924 | 0.6517317265 |
0.4 | 0.6554217416 | 0.6590970262 | 0.6627572732 | 0.6664021794 | 0.6700314463 | 0.6736447797 | 0.6772418897 | 0.6808224912 | 0.6843863035 | 0.6879330506 |
0.5 | 0.6914624613 | 0.6949742691 | 0.6984682125 | 0.7019440346 | 0.7054014838 | 0.7088403132 | 0.7122602812 | 0.715661151 | 0.7190426911 | 0.7224046752 |
0.6 | 0.7257468822 | 0.7290690962 | 0.7323711065 | 0.7356527079 | 0.7389137003 | 0.7421538892 | 0.7453730853 | 0.7485711049 | 0.7517477695 | 0.7549029063 |
0.7 | 0.7580363478 | 0.7611479319 | 0.7642375022 | 0.7673049077 | 0.7703500028 | 0.7733726476 | 0.7763727076 | 0.7793500537 | 0.7823045624 | 0.7852361158 |
0.8 | 0.7881446014 | 0.7910299121 | 0.7938919464 | 0.7967306082 | 0.7995458067 | 0.8023374569 | 0.8051054787 | 0.8078497979 | 0.8105703452 | 0.813267057 |
0.9 | 0.8159398747 | 0.8185887451 | 0.8212136204 | 0.8238144578 | 0.8263912197 | 0.8289438737 | 0.8314723925 | 0.8339767539 | 0.8364569407 | 0.8389129405 |
1 | 0.8413447461 | 0.843752355 | 0.8461357696 | 0.8484949972 | 0.8508300497 | 0.8531409436 | 0.8554277003 | 0.8576903456 | 0.8599289099 | 0.862143428 |
1.1 | 0.8643339391 | 0.8665004868 | 0.868643119 | 0.8707618878 | 0.8728568494 | 0.8749280644 | 0.8769755969 | 0.8789995156 | 0.8809998925 | 0.882976804 |
1.2 | 0.8849303298 | 0.8868605536 | 0.8887675626 | 0.8906514476 | 0.8925123029 | 0.8943502263 | 0.8961653189 | 0.8979576849 | 0.899727432 | 0.901474671 |
1.3 | 0.9031995154 | 0.9049020822 | 0.906582491 | 0.9082408643 | 0.9098773275 | 0.9114920086 | 0.9130850381 | 0.9146565492 | 0.9162066776 | 0.9177355613 |
1.4 | 0.9192433408 | 0.9207301585 | 0.9221961595 | 0.9236414905 | 0.9250663005 | 0.9264707404 | 0.927854963 | 0.929219123 | 0.9305633767 | 0.931887882 |
1.5 | 0.9331927987 | 0.9344782879 | 0.9357445122 | 0.9369916355 | 0.9382198233 | 0.939429242 | 0.9406200594 | 0.9417924444 | 0.9429465668 | 0.9440825975 |
1.6 | 0.9452007083 | 0.9463010719 | 0.9473838615 | 0.9484492515 | 0.9494974165 | 0.950528532 | 0.9515427737 | 0.9525403182 | 0.9535213421 | 0.9544860227 |
1.7 | 0.9554345372 | 0.9563670635 | 0.9572837792 | 0.9581848624 | 0.959070491 | 0.9599408431 | 0.9607960967 | 0.9616364296 | 0.9624620197 | 0.9632730443 |
1.8 | 0.9640696809 | 0.9648521064 | 0.9656204976 | 0.9663750306 | 0.9671158813 | 0.9678432252 | 0.968557237 | 0.9692580911 | 0.969945961 | 0.97062102 |
1.9 | 0.9712834402 | 0.9719333933 | 0.9725710503 | 0.9731965811 | 0.9738101551 | 0.9744119405 | 0.9750021049 | 0.9755808147 | 0.9761482357 | 0.9767045322 |
2 | 0.9772498681 | 0.9777844056 | 0.9783083062 | 0.9788217304 | 0.9793248371 | 0.9798177846 | 0.9803007296 | 0.9807738278 | 0.9812372336 | 0.9816911001 |
2.1 | 0.9821355794 | 0.9825708221 | 0.9829969774 | 0.9834141933 | 0.9838226166 | 0.9842223926 | 0.9846136652 | 0.984996577 | 0.9853712692 | 0.9857378816 |
2.2 | 0.9860965525 | 0.9864474189 | 0.9867906162 | 0.9871262786 | 0.9874545386 | 0.9877755273 | 0.9880893746 | 0.9883962085 | 0.9886961558 | 0.9889893417 |
2.3 | 0.98927589 | 0.9895559229 | 0.9898295613 | 0.9900969244 | 0.9903581301 | 0.9906132945 | 0.9908625325 | 0.9911059574 | 0.991343681 | 0.9915758136 |
2.4 | 0.9918024641 | 0.9920237397 | 0.9922397464 | 0.9924505886 | 0.992656369 | 0.9928571893 | 0.9930531492 | 0.9932443474 | 0.9934308809 | 0.9936128452 |
2.5 | 0.9937903347 | 0.9939634419 | 0.9941322583 | 0.9942968737 | 0.9944573766 | 0.994613854 | 0.9947663918 | 0.9949150743 | 0.9950599842 | 0.9952012034 |
2.6 | 0.995338812 | 0.9954728889 | 0.9956035117 | 0.9957307566 | 0.9958546986 | 0.9959754115 | 0.9960929674 | 0.9962074377 | 0.996318892 | 0.996427399 |
2.7 | 0.9965330262 | 0.9966358396 | 0.9967359042 | 0.9968332837 | 0.9969280408 | 0.9970202368 | 0.9971099319 | 0.9971971854 | 0.9972820551 | 0.9973645979 |
2.8 | 0.9974448697 | 0.997522925 | 0.9975988175 | 0.9976725998 | 0.9977443233 | 0.9978140385 | 0.997881795 | 0.997947641 | 0.9980116241 | 0.9980737909 |
2.9 | 0.9981341867 | 0.9981928562 | 0.9982498431 | 0.99830519 | 0.9983589388 | 0.9984111304 | 0.9984618048 | 0.9985110013 | 0.9985587581 | 0.9986051128 |
3 | 0.998650102 | 0.9986937616 | 0.9987361266 | 0.9987772313 | 0.9988171093 | 0.9988557932 | 0.998893315 | 0.9989297061 | 0.998964997 | 0.9989992175 |
3.1 | 0.9990323968 | 0.9990645633 | 0.9990957448 | 0.9991259685 | 0.9991552608 | 0.9991836477 | 0.9992111543 | 0.9992378053 | 0.9992636247 | 0.999288636 |
3.2 | 0.9993128621 | 0.9993363251 | 0.999359047 | 0.9993810489 | 0.9994023515 | 0.999422975 | 0.9994429389 | 0.9994622626 | 0.9994809646 | 0.9994990631 |
3.3 | 0.9995165759 | 0.9995335201 | 0.9995499128 | 0.9995657701 | 0.9995811081 | 0.9995959422 | 0.9996102876 | 0.9996241591 | 0.9996375709 | 0.9996505369 |
3.4 | 0.9996630707 | 0.9996751856 | 0.9996868943 | 0.9996982094 | 0.9997091429 | 0.9997197067 | 0.9997299123 | 0.9997397708 | 0.9997492931 | 0.9997584897 |
3.5 | 0.9997673709 | 0.9997759467 | 0.9997842266 | 0.9997922202 | 0.9997999365 | 0.9998073844 | 0.9998145726 | 0.9998215094 | 0.9998282029 | 0.999834661 |
3.6 | 0.9998408914 | 0.9998469015 | 0.9998526985 | 0.9998582894 | 0.999863681 | 0.9998688798 | 0.9998738924 | 0.9998787248 | 0.999883383 | 0.999887873 |
3.7 | 0.9998922003 | 0.9998963704 | 0.9999003886 | 0.9999042601 | 0.9999079899 | 0.9999115827 | 0.9999150433 | 0.9999183762 | 0.9999215858 | 0.9999246764 |
3.8 | 0.999927652 | 0.9999305166 | 0.9999332742 | 0.9999359284 | 0.9999384828 | 0.9999409411 | 0.9999433065 | 0.9999455823 | 0.9999477718 | 0.9999498779 |
3.9 | 0.9999519037 | 0.9999538519 | 0.9999557255 | 0.9999575271 | 0.9999592592 | 0.9999609244 | 0.9999625251 | 0.9999640637 | 0.9999655424 | 0.9999669634 |
4 | 0.9999683288 | 0.9999696406 | 0.9999709009 | 0.9999721116 | 0.9999732744 | 0.9999743912 | 0.9999754636 | 0.9999764934 | 0.9999774821 | 0.9999784313 |
4.1 | 0.9999793425 | 0.999980217 | 0.9999810564 | 0.9999818618 | 0.9999826347 | 0.9999833762 | 0.9999840876 | 0.99998477 | 0.9999854245 | 0.9999860523 |
4.2 | 0.9999866543 | 0.9999872315 | 0.9999877849 | 0.9999883154 | 0.999988824 | 0.9999893115 | 0.9999897787 | 0.9999902264 | 0.9999906553 | 0.9999910663 |
Inverse Z table
Calculates the inverse cumulative distribution (example).Z1-α= −Zα
α | Zα | Z1-α | Zα/2 | Z1-α/2 |
---|---|---|---|---|
0.001 | -3.090232 | 3.090232 | -3.290527 | 3.290527 |
0.0025 | -2.807034 | 2.807034 | -3.023341 | 3.023341 |
0.005 | -2.575829 | 2.575829 | -2.807034 | 2.807034 |
0.01 | -2.326348 | 2.326348 | -2.575829 | 2.575829 |
0.025 | -1.959964 | 1.959964 | -2.241403 | 2.241403 |
0.05 | -1.644854 | 1.644854 | -1.959964 | 1.959964 |
0.1 | -1.281552 | 1.281552 | -1.644854 | 1.644854 |
0.15 | -1.036433 | 1.036433 | -1.439531 | 1.439531 |
0.2 | -0.841621 | 0.841621 | -1.281552 | 1.281552 |
0.25 | -0.67449 | 0.67449 | -1.150349 | 1.150349 |
0.3 | -0.524401 | 0.524401 | -1.036433 | 1.036433 |
0.35 | -0.38532 | 0.38532 | -0.934589 | 0.934589 |
0.4 | -0.253347 | 0.253347 | -0.841621 | 0.841621 |
What is a Z-Table?
The z-table is known by several names, including z score table, normal distribution table, standard normal table, and standard normal distribution table.
Z score is the value of the standard normal distribution.
The Z-table contains the probabilities that the random value will be less than the Z score, assuming standard normal distribution.
The Z score is the sum of the left column and the upper row.
What is z-score?
A z-score is a statistical measure that quantifies how many standard deviations a data point is away from the mean of the dataset. It can be used to describe the distance of a value from the mean in terms of standard deviations.
What is a good z-score?
There isn't a definite good or bad z-score. However, extreme z-scores may suggest that the assumed mean is incorrect. For instance, when the significance level is 0.05, the likelihood of obtaining a z-score less than -1.96 or greater than 1.96 is less than 0.05. In such situations, we may reject the assumption that we know the mean.
What is the purpose of z-score?
- Z-score can be used to determine whether to reject the null hypothesis (H0). If the z-score is extreme, then you may reject the null hypothesis.
- Z-score can be used to scale or standardize variables, allowing for comparisons between variables with different units. For instance, you can determine what is more extreme: a 300-gram orange or a 2.05-meter man? Such a comparison is only possible when the variables have been standardized through scaling.
Normal distribution to standard normal distribution:
When working with the normal distribution, it can be useful to convert to the standard normal distribution, which has a mean of 0 and a standard deviation of 1. The z-table is built based on the standard normal distribution. However, if you need to calculate the probability for a non-standard normal distribution, you can use the following z-score formula.
z = | 𝑥 - μ |
σ |
𝑥 - the value.
z - the z-score.
μ - the mean.
σ - the standard deviation.
Example
"Compute the z-score for a value of 18, given that the mean is 12 and the standard deviation is 3."
z = | 18 - 12 | = 2 |
3 |
Is it recommended to use the z-table?
No! This is the 21st century! For any practical use, instead of tables, you can use the normal distribution calculator Simply select the appropriate value from "Probability (p) or percentile (𝑥)": 𝑥₁ for the Z-table or P(X≤𝑥₁) for the inverse Z-table.
If you are a student you may use z-table as needed.
Example, z-table:
"Calculate the probability of a randomly selected value being less than a Z-score of 0.32."
Row 4 (0.3) and column 3 (0.02). 0.32 = 0.30 + 0.02
P(x ≤ 0.32) = 0.6255158347
P(x ≤ -0.32) = 1- P(x ≤ 0.32) = 0.3744841653
The probability is 0.3744841653
Inverse Z table:
Calculates the Z score based on the less than or greater than probabilitiesα - contains the probability.
Zα - the Z-value where p(x ≤ Zα) = α, critical value of the left-tailed test.
Z1-α - the Z-value where p(x ≥ Z1-α) = α, critical value of the right-tailed test.
Zα/2 - the Z-value where p(x ≤ Zα/2) = α/2, left critical value of the two-tailed test.
Z1-α/2 - the Z-value where p(x ≥ Z1-α/2) = α/2, right critical value of the two-tailed test.
Example, Inverse z-table:
Row number 6 (excluding the header)
P( x ≤ -1.644854 ) = 0.05, P( x ≥ 1.644854 ) = 0.05, P( x ≤ -1.959964 ) = 0.025, P( x ≥ 1.959964 ) = 0.025